

Diastereoselective Intramolecular Diels-Alder Reaction of the Furan Diene. A Facile Access to Enantiopure Epoxy Tetrahydroisoindolines.

Celia Andrés,^a Gregorio Maestro,^a Javier Nieto,^a Rafael Pedrosa,^{*a}

Santiago García-Granda^b and Enrique Pérez-Carreño.^b

^aDepartamento de química Orgánica, Facutad de Ciencias, Universidad de Valladolid, Dr. Mergelina s/n, 47011-Valladolid, Spain. ^bDepartamento de Química-Física y Analítica, Facultad de Químicas, Universidad de Oviedo, Julián Claverías s/n 33006-Oviedo, Spain.

Abstract: 2-(2'-Furfuryl)-N-acryloyl tetrahydro-1,3-benzoxazine 2a participates in diastereoselective intramolecular Diels-Alder reaction in very mild conditions leading to two diastereoisomeric *exo*-adducts with good diastereoselectivity. Chromatographic separation of both adduts, and further elimination of the menthol appendage allows to prepare enantiopure *iso*-indoline derivatives in excellent chemical yields, © 1997 Elsevier Science Ltd. All rights reserved.

The synthesis of oxatricyclic γ -lactams is interesting because their potential transformation into usefull products.¹ To this end, intramolecular Diels-Alder reaction employing furan as the dienic component (IMDAF), including some diastereoselective approaches^{1,2} have been used.³ As a part of an ongoing projet directed to the use of chiral tetrahydro-1,3-oxazines in asymmetric synthesis,⁴ we present here a diastereoselective IMDAF reaction using this heterocycle as chiral template, and directed to the preparation of *iso* indoline derivatives.

To this end, chiral tetrahydro-1,3-benzoxazines **1a-b** were prepared as single diastereoisomers,⁵ by condensation of (-)-8-aminomenthol⁶ with 2-furaldehyde and 3-furaldehyde respectively, in benzene at R.T. in 96% chemical yield.

The dienophile component was introduced by reaction of **1a-b** in CH₂Cl₂ with acryloyl cloride in the presence of triethylamine at 0°C. In these conditions the acrylamide **2b** can be isolated,⁷ but **2a**⁸ immediately participates in the IMDAF reaction leading to a mixture of two diasteroisomeric cycloadducts **3** and **4** in a 71:29 ratio, in 88% total chemical yield. (Scheme 1).

Contrary to previously described for tertiary amides,⁹ the stereoselectivity of the reaction was deeply affected by the nature of the solvent,² and some results are collected in Table 1. These data indicate that the cycloaddition does not occur below $0^{\circ}C$ (entry 1 in the Table), and that the temperature only has a little effect on the ratio of diastereoisomers (copare entries 2 and 3 or 5 and 6). On the contrary, the change from CH₂Cl₂ to hexane as solvent just inverts the ratio of stereoisomers at the same temperature (compare entry 3 versus 8 in the

Table). Compound 4 was also formed as major diastereoisomer when the solvents of the reaction were diethyl ether or toluene, but the diastereomeric excess highly decreased; in clorobenzene the major diastereoisomer

Scheme 1: Reagents and conditions: i) CH₂=CHCOCl, NEt₃, 0°C, 15-30 min. ii) Solvent, Time, Temperature (Table 1), chromatographic separation. iii) AlH₃, THF, -10°C, 5 min. iv) PCC, 4Å mol. sieves , R.T., 6 h. v) 2.5M KOH in THF-MeOH, R.T., 5h.

Entry	Solvent	Time (H)	T (%C)	Yield (%) ^a	Diast. Ratio ^b 3 / 4
2	CH ₂ Cl ₂	1 90	0	88	71 / 29
3	CH ₂ Cl ₂	15	23	96	69/31
4	Et ₂ O	18	20	73	45 / 55
5	C6H5CH3	190	0	93	37 / 63
6	C ₆ H ₅ CH ₃	14	23	96	38 / 62
7	C ₆ H ₅ CH ₃	3	110	93	43 / 57
8	Hexane	15	23	96	22 / 78
9	C ₆ H ₅ Cl	215	0	89	53 / 47

Table 1. IMDAF reactions of 2a in different solvents

^aYields refer to pure compounds after column chromatography. ^bDiastereomeric ratios were measured by ¹H-NMR in the reaction mixtures.

formed was 3, but the diastereoselection was very low. It is noteworthing that the acrylamide 2b derived from 3-furaldehyde does not participate in the IMDAF reaction, and it was recovered unchanged after heating for 24 h in decalin at reflux.

The diastereoisomers 3 and 4 were easily isolated as pure compounds¹⁰ by column chromatography (silica gel EtOAc: hexane 1:3) and, after recrystallization, they were converted into the amino alcohols 5 and 6 respectively by reduction¹¹ with AlH₃ in THF at -10°C, in 93% chemical yield. The crude reaction mixture of 5 was transformed into 7 ($[\alpha]_D^{25} = +30.31$ (c = 5.6, CH₂Cl₂) by sequential PCC oxidation in the presence of 4Å molecular sieves and retro-Michael reaction by treatment with a 2.5M solution of KOH in THF-MeOH.¹² The same sequence over 6 led to *ent*-7 ($[\alpha]_D^{25} = -30.12$ (c = 2.1, CH₂Cl₂).

The absolute configuration of 7 was stablished by X-ray crytallography of 3^{13} (Figure 1) and was shown to be (3aS, 6S, 7aS), whereas the assignment of the absolute stereochemistry for *ent*-7 was made by comparison of the sign and value of the specific rotation with those measured for 7.

Figure 1. Chem 3D of compound 3 from X-ray coordinates

The observed stereochemical results can be interpreted by accepting that the approach of the furan nucleus to the dienophile occurs with an *exo* orientation, as previously stated for IMDAF reactions when the linkage betwen both components is short.^{2,14} Otherwise, the transition state leading to 3 has a net dipole moment about the amide bond, and consequently must be stabilized by solvents with higher dielectric constants, whereas the less polar transition state yielding 4 is favored in non-polar solvents.^{9a, 15}

It is worthy to note that the major diastereoisomer 3 obtained in CH_2Cl_2 was the kinetically controlled product, because after isolation, it was transformed into the thermodynamically more stable 4 (4/3: 75/25) by refluxing for 24 h. in decalin.

Because the cleavage of the oxanorbornene system is a well documented process,¹⁶ the described reaction opens a way to a diversity of enantiopure compounds, and efforts are in progress to further study the applications of this reaction, that will be reported in due course.

Acknowledgements: The authors thank the Spanish DGICYT (Projects PB92-0262 and PB95-0707) for financial support of this work. One of us (J. N.) thanks the Spanish Ministerio de Educación y Ciencia for a predoctoral Grant (P. F. P. I.).

References and Notes.

 (a) Mukaiyama, T.; Iwasawa, N. Chem. Lett. 1981, 29. (b) Jung, M. E.; Street, L. J. J. Am. Chem. Soc. 1984, 106, 8327.

- (a) Zylber, J.; Tabul, A.; Brun, P. Tetrahedron: Asymmetry 1995, 6, 377. (b)Woo,S.; Keay, B. Tetrahedron: Asymmetry 1994, 5, 1411. (c) Zhao, Y.; Pratt, N. E.; Heeg, H. J.; Albizati, K. F. J. Org. Chem. 1993, 58, 1300. (d) Jung, M. E.; Street, L. J. Heterocycles 1988, 27, 45.
- Hudlicky, T.; Butora, G.; Fearnley, S. P.; Gun, A. G.; Persichini III, P. J.; Stabile, M. R.; Merola, J. S. J. Chem. Soc. Perkin Trans I 1995, 2393.
- (a) Andrés, C.; Nieto, F. J.; Pedrosa, R.; Villamañán, N. J. Org. Chem. 1996, 61, 4130. (b) Andrés, C.; Duque, J. P.; Iglesias, J. M.; Pedrosa, R. Tetrahedron Lett., in press.
- 5. The stereochemistry of 1a-b was stablished by NOE experiments
- 6. Eliel, E.; He, X.-C. J. Org. Chem. 1990, 55, 2114.
- 7. **2b** : Colorless solid, m.p. 61-62°C (from EtOH). $[\alpha]_D^{25} = +18.45$ (c = 1, CH₂Cl₂). ¹H-NMR: 7.46 (m, 1H); 7.34 (m, 1H); 6.45 (m, 1H); 5.33 (s, 1H); 3.54 (dt, 1H, J₁ = 10.6 Hz, J₂ = 4.2 Hz); 1.96 (m, 1H); 1.65-1.77 (m, 2H); 1.48 (m, 1H); 1.15 (s, 3H); 1.11 (s, 3H); 0.93 (d, 3H, J = 6.6Hz). ¹³C-NMR: 142.9; 139.5; 126.5; 108.6; 78.3; 75.1; 51.5; 51.4; 41.6; 35.0; 31.4; 29.9; 25.6; 22.3; 19.6.
- 8. The formation of **2a** was noted by ¹H-NMR in the reaction carried out a -10°C, but attempts to isolation failed because it cyclizes quickly.
- 9. (a) Jung, M. E.; Gervay, J. J. Am. Chem. Soc. 1989, 111, 5469. (b) Jung, M. E. Synlett 1990, 186
- 10. All new compounds gave appropriate spectroscopic data (IR, ¹H-NMR, ¹³C-NMR) and correct elemental analyses.
- 11. Burgess, L. E.; Meyers, A. I. J. Org. Chem. 1992, 57, 1656.
- 12. Choi, V. M. F.; Elliot, J. D.; Johnson, W. S. J. Org. Chem. 1983, 48, 2294.
- Crystal data for compound 3: C18H25NO3. Mr=303.40, tetragonal, space group P 41212, a = 12.950(2) Å, b = 12.950(2)Å, c = 19.142(5)Å, V= 3210(1) Å³, Z = 8, D_x = 1.26/cm³. MoK_α radiation (graphite crystal monochromator, λ = 0.71073 Å), μ (MoK_α) = 0.791 cm⁻¹, F(000) = 1312, T= 200K. Final conventional R-factor = 0.028 for 2182 'observed' reflections and 299 variables. The structure was solved by Direct Methods using SHELXS86.
- 14. (a) Rogers, C.; Keay, B. A. Can J. Chem. 1992, 70, 2929. (b) Rogers, C.; Keay, B. A. Tetrahedron Lett. 1991, 32, 6477. (c) Rogers, C.; Keay, B. A. Synlett, 1991, 353.
- 15. Cativiela, C.; García, J. I.; Mayoral, J. A.; Salvatella, L. Chem. Soc. Rev. 1996, 25, 209, and references cited therein.
- See, for example: Vogel, P.; Auberson, Y.; Bimbala, R. M.; Gutcheneere, E.; Vieiera, E.; Wagner, J. in Trends in Synthetic Carbohydrate Chemistry. Horton, D.; McGarvey, G. J. (Eds). ACS Symp. Ser. 386 Washington D.C. 1989 p.197.

(Received in UK 17 December 1996; accepted 10 January 1997)